On Finitely Generated Models of Theories with at Most Countably Many Nonisomorphic Finitely Generated Models

نویسنده

  • ABDEREZAK OULD HOUCINE
چکیده

We study finitely generated models of countable theories, having at most countably many nonisomorphic finitely generated models. We introduce a notion of rank of finitely generated models and we prove, when T has at most countably many nonisomorphic finitely generated models, that every finitely generated model has an ordinal rank. This rank is used to give a property of finitely generated models analogue to the Hopf property of groups and also to give a necessary and sufficient condition for a finitely generated model to be prime of its complete theory. We investigate some properties of limit groups of equationally noetherian groups, in respect to their ranks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MULTIPLICATION MODULES THAT ARE FINITELY GENERATED

Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$ there exists an ideal $I$ of $R$ such that $N = IM$. It is shown that over a Noetherian domain $R$ with dim$(R)leq 1$, multiplication modules are precisely cyclic or isomorphic to an invertible ideal of $R$. Moreover, we give a charac...

متن کامل

Finitely Generated Annihilating-Ideal Graph of Commutative Rings

Let $R$ be a commutative ring and $mathbb{A}(R)$ be the set of all ideals with non-zero annihilators. Assume that $mathbb{A}^*(R)=mathbb{A}(R)diagdown {0}$ and $mathbb{F}(R)$ denote the set of all finitely generated ideals of $R$. In this paper, we introduce and investigate the {it finitely generated subgraph} of the annihilating-ideal graph of $R$, denoted by $mathbb{AG}_F(R)$. It is the (undi...

متن کامل

A characterization of finitely generated multiplication modules

 Let $R$ be a commutative ring with identity and $M$ be a finitely generated unital $R$-module. In this paper, first we give necessary and sufficient conditions that a finitely generated module to be a multiplication module. Moreover, we investigate some conditions which imply that the module $M$ is the direct sum of some cyclic modules and free modules. Then some properties of Fitting ideals o...

متن کامل

On Regularity of Acts

In this article we give a characterization of monoids for which torsion freeness, ((principal) weak, strong) flatness, equalizer flatness or Condition (E) of finitely generated and (mono) cyclic acts and Condition (P) of finitely generated and cyclic acts implies regularity. A characterization of monoids for which all (finitely generated, (mono) cyclic acts are regular will be given too. We als...

متن کامل

Vaught's conjecture for superstable theories of finite rank

In [Vau61] Vaught conjectured that a countable first order theory has countably many or 2א0 many countable models. Here, the following special case is proved. Theorem. If T is a superstable theory of finite rank with < 2א0 many countable models, then T has countably many countable models. The basic idea is to associate with a theory a ∧ − definable group G (called the structure group) which con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008